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ELASTIC AND THERMOELASTIC CHARACTERISTICS OF COMPOSITES REINFORCED WITH 
UNIDIRECTIONAL FIBRE LAYERS* 

S.K. KANAUN and L.T. KUDRYAVTSEVA 

Composites reinforced with infinite, unidirectional cylindrical fibres 
are considered. It is assumed that the thermoelastic characteristics of 
every fibre are functions of the distance from its axis of symmetry. 
The material of the medium and the fibres is transversally iostropic, 
with the axis of isotropy coinciding with the direction of the 
reinforcing fibres. The problem of thermoelasticity for a medium 
containing an isolated, cylindrically inhomogeneous inclusion in 
constant external stress and temperature fields is considered first. 
The problem is solved using the method developed in /i/. An efficient 
numerical algorithm for constructing the solution is given for the case 
of a cylindrically layered fibre. 

The interaction between the fibres in the composite is described 
using the effective (selfconsistent) field method /2, 3/. Tensors of 
effective moduli of elasticity and coefficients of linear expansion of 
the composities reinforced with cylindrically layered fibres are 
constructed. Formulas for estimating the concentrations of 
microstresses in the fibres within the composite are obtained, and some 
numerical results are given. 

I. Iso~xzted ~ y ~ a Z  ~r~8~ 4, G ~o@~ow8 e~zst~ ~diY~. Let a homogeneous 
elastic medium with tensor of the moduli c o contain an inclusion occupying the region V, which 
has the form of an infinite circular cylinder. We shall assume that the tensor of the moduli 
of elasticity of the inclusion c = co + cz is a piecewise-smooth function of the coordinate 
r, i.e. of the distance from its axis of symmetry. We shall consider the position of the 
point z of the medium in the Cartesian system of coordinates (~, x~, x s) and the cylindrical 
system of coordinates (r, n, z). Here the x a and z axes are directed along the axis of 
symmetry of the inclusion, and n is a unit vector of the r axis. If the external stress 
field O 0 applied to the medium is constant, then the deformation tensor ~ (x) in the 
medium with an inclusion does not depend on the coordinate xa(z ) and can be written in the 
form 

e (y) = [I -t- A (y)l.eo, e, = ~ - 1 " o o ,  y = y (~,  22) ( l . i )  

where a dot denotes the contraction of the tensors over two indices and I is a tetravalent 
unit tensor. The tensor A (y), vanishing as ]y ]-~oo, satisfies an integral equation 
which follows from the equation for the deformation tensor in a medium containing an inhomo- 
geneity /4/, and has the form 

A:(y) + I K (y - -  y ' ) . c t  (y) ' .  A (y)' dy '  = - -  f K (y - -  y ' ) .c l  ( y ' )dy '  (1.2) 
v v 

The kernel K(y) of the integral operator K in this equation is given in terms of the 
second derivative of Green's function G (x) for a homogeneous three-dimensional medium c o 

K=px~ (y) = - -  S Y=)V(~Gx)(. (y, xs) dx 8 

From this it follows that the Fourier transformation K* (~) of the function 
symbol of the operator K) has the form 

K* (~) = K* (k) ~.=o, K * ~ .  (k) = k=)k(~G~)(. (k) 

G*(k ) '=  L- l (k ) ,  L ( ~ ( k  ) - ~=~I.  = ~ c o  ,.., ~ = ~ ( k . k ~ )  
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Here k (k,, kz, ks) is the vector parameter of the Fourier transformation, and the system 
of coordinates k,, k,, k s is conjugate to xx, x,, x a. From (1.3) we see that K* (~) is a homo- 
geneous function of zero degree in ~. A solution of Eq.(l.2) exists and is unique, provided 
that detIco+C,(y )] is not equal to zero or infinity for all values of y /4, 5/. 

8. Spec~Z %~oP bases. The tensor functions appearing in the problem can be represented 
more easily by introducing three tensor bases. We shall use the unit vectors e and n (unit 
vectors of the z and P axes) as the generators of these bases, as well as a bivalent tensor 
0~ ~ ~--ea~ which is a projector on the 0 plane orthogonal to e(~a~ is the Kronecker 
delta). 

First we shall determine the P-basis consisting of the following six tensors: 

Pm~x. = O~)~=O0)~v. P~3x~ = O~t~O~.~. Psaox, = O=l~e~e~ (2.1) 

P~c~ .  = ec, e~Ox~, P~c~3~,~ = O~)(,zefi)e~, P6c,~.~ = ec.e~e~e. 

The tensors P~ form a system closed under the operation of multiplication, i.e. con- 
traction over two indices (/6/, example 4). The basis Pt is convenient for representing the 
tensor of the moduli of elasticity of a transversely isotropic body. In particular, the 
tensor c can be written in the form 

~ = + (  t E, ) E, Vxs 
EsA l+v~z  ' I't : 2(t-}-vt~) "t'= ' EsA 

1 - -  vx, h - -  1 - -  " 4 1 2  - -  2 / vl ,  ~. 
= 4~3 P = E1A ' EIEs k"-~-s) 

(2.2) 

where k, ~, T, ~, p are the scalar elasticity parameters depending on the coordinate P, and 
the relations connecting them with the "technical" moduli are represented by the above 
equations. 

Here E~ is Young's modulus in a plane transverse to the cross-section of the fibre, E s 
is the same modulus in the direction of the axis of the fibre, vx~,vxs are Poisson's ratios, 
and ~s is the shear modulus. A representation analogous to (2.2) (with parameters ~0, ~0, %, 
~0, Po) admits of the tensor of the moduli of elasticity of the medium c o . When the medium 
is isotropic, ~ and ~ are the Lame parameters and • = ~, ~ = 4~, p = ~q- ~. 

We form the O-basis from six tensors O, belonging to the 0 plane 

@1~xv ~ Ox)(=Of~(u, 02ap~ ~ ---- Oa,~O~, 03~.~ ~ Oaf~nxn~, (2.3) 

The.tensors also form a closed algebra relative to the operation of multiplication 
introduced above. We note that the linear spaces stretched over the P- and O-bases have a 
non-empty intersection, since 01 = Pl, 02 = P2. 

We construct the R-basis for the following five tensors: 

Rla~x~=n~n¢nkn~, R2~x.=e~efiexe~ (2.4) 

Ba=~x~ ~ e~e#nxn u, Rtafik~ = n a n  e, e . ,  Rsa~x ~ = n(ae~)n¢~e.) 

and note that the product of the elements of the P-, O- and R-bases is a linear combination 
of the tensors (2.1), (2.3) and (2.4). 

Using the relations (1.3) and (2.2), we can show that the symbol K* (~) of the operator 
K in (1.2) can be written in the form 

K* (m) = po -x [O5 (m) - -  Xo0 ,  (m)]  + 46o-*R6 (m, e) 

m = ~/ [ ~  l, Xo = (Lo + ~o)/(~.o + 21.o) 
(2.5) 

3. T~ solut~ Of Eq.(1.2). In order to construct the solution of Eq.(l.2) we shall 
use a special representation of the integral operator K. The Mellin transformation of the 
tensor function ](n,r) with respect to the variable P, has the form 
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It can be shown that the operator K, on the piecewise smooth functions /(n,r), has the 
representation /7/ 

( K / ) ( n , r )  ~ I r - ~ ( K J * ) ( n , s ) d s  

(Ks /* )  (n, s) = - -  ~ F (Z -- s) F (s) I ( -  n. m)-' dm I (1. m) ~-~ K* (ra). ]* (1, s)dl 

(3 l )  

(3.2) 

Here F ~) is a gamma function and n, m, I are vectors on the unit circle ~i. The 

tensor K* (m) has the form (2.5). 
Acting with the operator of Mellin transformation on both sides of the initial Eq.(l.2) 

and taking into account (3.1), we obtain 

A* (n, s) -5 K~ (cl .A)*(n,  s) = - - (KlCl*) (n ,  s) (3.3) 

We shall seek the Mellin transform A* (n,s) of the tensor A (n,r) in the form of an 
expansion over the elements of the P-, O- and R-bases with scalar coefficients depending 
on the parameter 8. First we inspect the result of the action of the operator K s on these 
bases. Carrying out the integration in (3.2), we can show that the following relations hold: 

i 
K s P l  = p.o (2 - -  s) (4 - -  s) [TI* + ( |  - -  ×o) Ta*], 

t - - u o  
K ~ P ~ =  ~o(2--s)  T4*' K~P 4 = K s p  6 = 0 ,  

K~P~ = ~ T , *  

2 
K~Ps - -  ~8(2--s) Ts* 

(3.4) 

The five tensors T,* appearing in them have the form 

TI* = (4 - -  s)(O, - -  sos )  - -  r 3 * ,  T~* = O, - -  sO~ 

Ya* = 02 4- 2 0 ,  - -  s (Oa 4- 9 ,  4- 405) 4- s (2 -5 s)gs 

T4* = Pa - -  sR4, Ts* = P~ --  sR5 

(3.5) 

The action of the operator Ks on the elements of the O-basis is expressed by three 
tensors given here, namely TI* , Y2* and Ta*, according to the formulas 

i --×8 s) T,* - -  (2 - -  s) T3* ] (3.6) K , O ,  = KsP, ,  z = 1, 2, K~O8 = I.t8 s (2 - -  s) (4- -s )  [(4 - -  

K~O4 (1- -  ×o)(s-- 1) t [2 (1 _ × o ) ( s _  t )  Ta.  + ~os (2 - -  s) T2*' KsO5 = 2~os (2 - -  s) (4 - -  s) 

sT1,], K~O6 = s - - I  ~*os (4 - - s ' ) (4  - -  s) ((1 - -  xo) [(4 - -  s) Ta* 4- sTz*] 4- 2T**} 

Finally, the action of K~ on the elements of the R-basis is determined by the relations 

K,R I=K/%, K.R 2=K~R s=O (3.7) 

(1--×8) ( s - -  l) 2 ( s - -  1~ 
KsR4 = ~ss (2 - -  s) T4*' K ' R 5  - bss (2 - -  s) To* 

Let us now turn our attention to relation (3.3). Since the tensor ci* on the right-hand 
side has a structure analogous to (2.2) with the coefficients (XI* (s), ~i* (s), TI* (s), 61" (s), 
p** (s), it follows from (3.4) that the right-hand side of (3.3) is a linear combination of 
tensors Y,* of the form (3.5) . If we now take the tensor A (n, r) as a linear combination 
of the elements of the P-, O- and R-bases with coefficients depending on r, then the product 
c, A will be represented in the form of the analogous expansion and the tensor K s (c,.A)* 
will be a linear combination of the tensors Tt* Therefore it is natural to seek the tensor 
A* (n, s) in the form of a linear combination of not all the elements of the P- , (9- and R- 
bases, but of must five tensors T~* (n, s) 

A* (n, s) = '~  %* (s) T,* (n, s) (3.8) 

Here ~* (s) are scalar functions of the parameter s whose r-representations are st(r ) 
Since the operator D = rd/dr in P-space corresponds to the multiplying factor (--s) in the 
space of Mellin transformations, it follows from (3.5) and (3.8), that 
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5 

A (n, r) = ~ T, (n, D) a ,  (r) (3.9) 
Z=t 

where the differential operators T, (n, D) are determined by the right-hand sides of relations 
(3.5), provided that the parameter (--s) in them is replaced by the operator D. 

In order to construct the five scalar functions ~, (e), we substitute expressions (3.8) 
and (3.9) for A* (n,s) and A (n, r) into (3.3), and use formulas (3.4)-(3.7). Here both 
sides of Eq. (3.3) are found to be linear combinations of five tensors T,* (n, $). Comparing 
the coefficients accompanying like tensors on the left-hand and right-hand sides of the 
resulting equation, we arrive at the system of relations connecting the function u,* (8) 
After algebraic reduction, these relations take the form 

~tos (4 - -  s2)(4 - -  s) a** (s) + $1" (s) = - -2s  (2 + s) $h* (s) (3 . t0)  

~toS (4 - -  s~)(4 - -  s ) [a3*  (s) - -  ( t  - -  Xo)C~l* (s)] + S2* (s) = 0 

0~o + 2$to) s (2 - -  s)~* (s) + ms* (s) = - -2s  [X,* (s) + Pl* (s)] 

(;~o + 2~o) s (2 --  s)c%* (s) + S,* (s) = - - $ T I *  ($) 

6oS (2 - -  s) ¢ts*(s ) + 85" (s) = - -  2s 61" (s), ~ = a2 + (4 + D) a8 

Here Si* (e) are scalar functions whose S- and P-representations have the form 

S, = D (2 ~ D) F1 [(2 -5 D) ~ a~ -5 4 (l -5 D) as] - -  4 (i -5 (3Ai )  
D) DzD (D - -  2)(a3 - -  az) 

$2 = (2 -5 D){(2 -- D)[XxD (4 + n)a8 + FI (6Dam + 

D2a~ -- 2D~,)] -- 2 (I -5 D) pxD (D -- 2)(aa -- ax)} 

Ss =D[X~(2+D) +2~,]~--2(I +D) F~D~ 

$4 = Dzl (2 + D) aa - -  2 (t + D) plOa4 

S~ = ~/~ ID6, - -  (D + t)61D] ¢~.~ 

Replacing, the functions cq* (s) and S,* ($) in relations (3.10) by their originals 
(3.11) and the factor (--8) by the operator D, we arrive at a system of the ,ordinary fourth- 
order differential equations for determining the functions az and ua, and of second-order 
differential equations for the functions ~, ~ and ~. 

If the elasticity parameters of the inclusion are picewise-smooth functions of P with 
derivatives equal to zero at r = 0, then the boundary conditions for determining the func- 
tions ~t (r) and ~ (r) will take the form 

Dcq = D ~ a ,  = 0 ,  ~ = 1 , 3 ;  D a ,  =D¢¢~ = D ~  = 0  (3.12i 
when r = 0 

a,, fi---~O a s  r - - - ~ c c ,  t = l ,  3 , 4 , 5  

The first group of these conditions holds by virtue of the continuity of the functions 
A (n, r) and r = 0, and the second group by virtue of the fact that A (n, r)tends to zero at 
infinity. 

4. The pl'obZe~t of ther,moe~Ist$.oity, we shall assume that the medium and the inclusion 
have, in addition to the moduli of elasticity, different coefficients of linear expansion s 0 
and ~. For transversely isotropic materials s 0 and u are two-valued tensors of the form 
(Q is a tensor product) 

¢t 0 = 0~000 -5 CtoeeQ e, c¢ (r) = ao ( r )  O + ~e (r) e ( ~  e 

where ~00 and u0 are coefficients of linear expansion in the phase orthogonal to the axis 
of the fibre, and s0,, u, are the same quantities in the direction of the fibre axis. Let us 
consider the state of stress of the medium with all inh(~mogeneotaa cylindricaLl inclusion, in a 
constant temperature field t, assuming that the medium is free fro~ internal stresses at t = 0. 

Let Gt (Y) be the temperature stress tensor, 8t'= c-*.ff t the elastic defotltation corre- 
sponding to ~t, e t = 8t e + at the total deformation (e = e0, ~ = ~0 for Y~ ~9, etl = et -- 
~0t is the perturbation in the total deformation related to the presence of an inhomogeneity, 
and et, (Y)-~0 as [Y l-~ oo. 

It can be shown that the tensor et, (y) in a medium with an infinite cylindrical in- 
clusion satisfies the following integral equation /8/: 

e,x (y ) + I K 6y -- y').c, (y').etl (y')dy" = (4. t)  
V 

~ K ( y - - y ' ) . c ( y ' )  a l (y ' ) tdy '  (a1=ct--ao) 
V 
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where the kernel K (y) has the same form as in (1.2). In what follows, we shall assume that 
t = i, therefore the expressions which will be obtained for the deformations and stresses 
will have to be multiplied by the actual value of the temperature t. 

Acting with the operator of Mellin transformation on both sides of (4.1), we obtain 

etl* (n, s) + K, (cl.~tO*(n , s) = K, (c aO*(n, s) (~ 2) 
cl"a~ = (ikalo -4-'r¢¢~) 0 Jr (2~aao -+- pa~e) e ~) e (k = ~ @ ~) 

The operator Ks is given by (3.2) , and its action on the tensors 0, e ~3 e and n ,v n 
is described by the relations 

K , 0 = ~ t - - × °  H,ln,s~,, K s(eO)~ e) = 0  (4.3) 

K ~ ( n ® n ) =  ( 1 - - × o ) ( s - - t ) H ( n , s ) ,  H ( n , s ) = O - - s n ~ n  
~ (2 - -  s) 

The a b o v e  r e l a t i o n s  show t h a t  t h e  f u n c t i o n s  ~1" (n, ,) and  e,~ (n, r) c a n  be  s o u g h t  i n  
t h e  fo rm 

~t~* (n,  s) - :  (0 - s n  ?~ n)fi~* (s), ~ (n, r) - (0 + n .... (4 4) 
nD) f t  (r) 

where fit* (s) is the Mellin transform of the scalar function ft (r). Substituting (4.4) into 
(4.2) we can confirm that the left- and right-hand sides of (4.2) are proportional to the 
tensor H (n, s), and comparing the coefficients of this tensor on the left- and right-hand 
sides we obtain 

~o~ (2 - -  ~) f t *  (s) + S~* (s) ×os~'* (s) (4 5) 

? (r) = 2/~ (r) alo (r) + • ('9 ch~ (r), ko = ~,o + Po 

St (r) = ×o [D (21q (r) ~ ;~ (r) D) - -  2 (D ÷ t)  th (r) Dirt  (r) 

Replacing the functions St* (s), ft* (s),?* (s) in (4.5) by their originals and the factor 
(--s) by the operator D, we obtain an ordinary second-order differential equation for ft (r). 
The boundary conditions for this equation will have a form analogous to (3.12) 

Dft 0 when r -- 0; ft-.O as r-, 

5. C ~ ~ y  ~yel, ed 4;'~Z~sion. Let the elasticity parameters and the coefficients 
of linear expansion of the inclusion be piecewise-constant functions with discontinuities at 
the points r = a~, z- 1,2 .... , N, 0<a x <ai<. <aA In this case the inclusion will consist 
of a kernel and N -- i cylindrical layers. In the regions within which the properties are 
constant (within the layers) the differential equations for the functions ~j, f and ~t, 
which follow from (3.10) and (4.5), simplify and take the form 

D ( 2 - - D ) ( 2  ~ D ) ( 4  + D )  a~ := 0, ] = 1,3; D ( 2  q- D) aj  = 0, 
1 = 4 , 5  

D ( 2  + D )  f - - 0 ,  D ( 2  ÷ D )  ft  = 0 

This implies that the form of the functions ~j, f and ~t is described, within the 
range a~-a < r < a,,l ~ I, 2 .... N(u 0 = 0, aN~1 = >~), by the relations 

c~ 1 _ y /  _t_ yz~r~ + y , r - 2  _ }'a~r-', an = y5 ~ + y6,r 2 + yT, r 2 + ys,r-4 (5.1) 

f = : Y ~ ' + Y a o  b '2 ,  ~ 4 = ~ n ~ - -  Yai~r '-, a~ = Ya3~ + Ya4'r -2, 
f t  = Ya~' + Y,6 'r-2 

where Y~ are arbitrary constants. Thus the solution of the problem within each layer is 
determined, apart from 16 constants. 

Let us inspect the jumps in the derivatives of the functions ~j (r), f (r) and ft (r) at 
the boundaries of the layers when r = a, We denote by [~], the jump in the piecewise-smooth 
function ~ (r) at the point r ~ a z 

[q)], = q ~ ( a , + 0 ) - - ( p ( a , - - 0 ) ,  q ) ( a , ~ 0 ) = h m q D ( a , - + = e ) ,  e > 0  
E ~ 0  

Using relations (3.10) and (4.5) in the same manner as in /i/, we can establish the 
validity of the following relations for the functions ~j (r) f (r) and ft (r) of the form (5.1) 

[%], 0, ; 1, 3, 4, 5, If], = [ft], ~- 0, [D%], 0, ! I, 3 (-, 2) 

[~tDial], -- - -2  [01~ 4 [pall  ` - -  2 [~tDaal, --  4[[~a31 ~ - -  4 [~ttDc¢3] ~ 
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[iLtDaaxlt = 12 [~t], + 24 [~tcq], + 16 [p.DcqL + 24 [ t tas] ,  + 52 [p.Das]~ 

[(L + 2p~)D-°a3], = - - 2  [Ix], - -  4 [~ax] ~ - -  4[~tDcq], - -  4 [p.aalt - -  

2 [(2~, + 3i~) D(xs], 

[(L + 2tt)DSas],  = 52 [Ix], + 24 lt tcql,  + t2  [laDcxx]t + 24 [p.as]~ q- 

16 [(k + 2~t) Dasl t  

[(L + 2~ )Df ] ,  = - - 2  [(Z, + ta)(t + [~)],, [ s n a s ] ,  = --[,5 (2 + as)J, 

[(~, + 2~)Da.~], = - - [x] ,  - -  2 [(L + p.)a4],, [(~, + 21.t)D[3th = 

[vl, - 2 [(~ + rt) ~tl~ 
(t = I ,  2 . . . . .  N)  

Using relations (5.1), (5.2) and boundary conditions (3.12), (4.6), we can find the 
whole bulk of the constants Y/ determining the solution of the problem in question. Let 
us describe the algorithm for calculating these constants. 

We introduce N q-I 16-dimensional vectors Yi whose components will be the constants 
appearing in (5.1), and N -~, I vectors X a (r) with components 

The vectors 

Xx' = a l '  X2~ = D ~ x '  Xs~ = D ~ a a  , X ,  i = D a ~ ,  Xs  ~ = ~s, 

X6' = Das, XT' = Di~s, Xs i = Da~z, X 9' = f, Xl0' = Dr, X n' = 

oq, X,2'  = Daa, X,3" = a 5, X,4'  = Das ,  X,5  ~ = f t ,  Xlo ~ = D f t  

¢9 = c9 (r), f = f (r), fit = fit (r), a,_ 1 < r < a , ,  t = t ,  2 . . . . .  N "4- t 

Y~ and X' are connected by the relations which follow from (5.1) 

(5.3) 

X ~ (r) = H ( r )  Y~, Y '  = H -x (r) X 2 (r), (5.4) 
2 4 

H = ® ha ~ h~ 

2r 2 _ 2 r - Z  _ 4 r - 4  r-2 
hi  ffi 4r~ 4r-Z t6r -a  II' hz = -- 2r_ 2 

8r ~ - - 8 r  -~ - - 6 4 r - "  

n 

where ~ is the direct (Cartesian) n-tuple matrix product. 
From (5.4) it follows that the value of the vector X % (r) at the right end of the ~-th 

interval (r-----a Z --0) can be expressed in terms of its value at the left and (r = a,_, q-0) 
by the formulas 

X~(at) = R~X'(a~_1), R '  = H(a t )H- l (a ,_ , ) ,  t = 2 ,3 ,  . . . , N  (5.5) 

By virtue of (5.2) the vectors X' and X '+* at the point r = a~ at the boundary of the 
i-th and (t + 1)-th layer are connected by the relations 

X ~+' (a t + 0) = F '  + r ' x  ' (a, - -  0) (5.6) 

where the form of the matrix F ~ and vector F i is reestablished from (5.2). 
Let the vector of the solution in the first layer X* (a,) be known. Then the vector 

X ~+* (at) , determining the solution in the (t q- 1)-th layer will be found from the formulas 
which follow from (5.5) and (5.6) 

X ' + l ( a , ) = g ~  + G ' X ~ ( a l ) ,  t =  l , 2 , . . . , N  
~+i 

g * = F * ,  g ' = F ' + Z ( 1 - I Q ~ ) F  ', , ~ 2  
2=1 k=z 

h = t  

(5.7) 

Here B* is a unit matrix, and the matrices /~k and k ~ 2 are definded in (5.5). we 
use the boundary conditions of the problem to construct the vector X* (a,). From the fact 
that the solution is bounded at r = 0 and tends to zero at infinity, it follows that ex- 
pressions (5.1) for the functions ~1~ f and ft in the first interval (0< r< al) contain 
no negative powers of P, and no positive powers of P in the (N q- 1)-th interval (aN < r ~. oo~ 
i.e. Yj* = 0 for ] = 3, 4, 7, 8, I0, |2, 14, 16; y N+, = 0 for j = 1,2,5,6,9, 11, 13, 15 Using the 
methods described in /i, 8/ we can obtain from this an equation for detei-mining the vector 
X 1 (a,) 
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B Z  : [, X a (a l )  = M Z  

B = LGNM, / -- L~, 2v, ~} 

2 2 /7/1 = ~ ?~2 = () ~) 
M = , + , m ~ : , m  2, 0 

2 ~ : 8 6 t 0  
L = ~ ' l  1 , ~ l  v l a - - 48  - -28  0 I ' l: 112 1[[ 

(.~ 8) 

Here B, M, L are the 8 X 8, 16 × 8 and 8 × 16 matrices respectively, Z is an eight- 
dimensional vector, and G N and gN are defined in (5.7). 

Having determined the vector X I (al) from (5.8), we use (5.7) to obtain all vectors 
X *+' (at), ~ = I, 2, . .., N, and (5.4) to obtain the constants Y/ which determine the solution 
of the problem in every interval a,_ 1 < r < a,, t : I, 2 .... N + i. 

Figs.l and 2 show graphs of the distribution of the stress ~1, along the x~ axis in a 
medium with a cylindrically inhomogeneous inclusion in the case when a uniaxial stress o 0 
acts along the x I axis. When fin was computed according to the proposed scheme, the medium 
and the inclusion were both assumed to be isotropic with the same Poisson's ratio v = 0.4, 
and .Young's modulus varying according to the law 

+6eXP(r--f-=T_l)] when r < ' l ,  E ( r ) - - E o  when r ~ l  E ( r )  = E o [ l  ~r2 (5 9) 

The inclusion was partitioned in the course of computation into N layers of thickness 
I/N, and Young's modulus of the i-th layer was assumed to be equal to E (dN) and computed 
from (5.9). When N ~ 40 the distribution of the stresses did not depend on the number of 
partitions and corresponded to a continuous variation in the value of the modulus in accord- 
ance with (5.9). The graphs in Fig.l correspond to a compliant inclusion (6 = --0 99), and 
those in Fig.2 to a rigid inclusion (8 = I00). 

6. A medium containing a set of cylindrically layered fibres. Let us now consider a 
medium containing a set of identical, cylindrically layered inclusions. We shall assume that 
all inclusions have the same orientation and that their distribution within the plane of 
transverse cross-section of the fibres is statistically isotropic. In order to construct the 
thermoelastic characteristics of such a medium, we shall use the effective (selfconsistent) 
field method, based on the solution of the problem of an isolated fibre obtained earlier. 
The scheme of the method was described in /1-3, 8/, and can be used here without any alter- 
ations. 

Let us give the final expressions for the tensors of the effective moduli of elasticity 
c. and the coefficients of linear expansion a. of the composite material, obtained by means 
of the method mentioned above: 

c .  = Co 4- A~-(I  - -  Ao.A~) -a, a .  = a o - -  (I - -  Do .A~) - I .A ,  (6 ~) 

Do = co'Ao'co - -  Co, Ao = blP* + b2 (P*-- 1/2P2) + b3P~ 

bl : t -- Xo b2 2 -- go 2 
4/~o ' = 4~to ' b3 : 

The tetravalent A, and bivalent A t tensors appearing here are given in terms of integrals 
over the cross-section ,~ of an arbitrary fibre, and have the form (n o is the numerical con- 
centration of the inclusions) 

A~ = n o ~c~(~) (I  + A (g))dg, A t = noc~*. I [cl(g)'etl(Y) - -  c (y)  ~ l ( g ) l d g  (6.2) 

where the tensors A (g) and et, (Y) are given by the relations (3.9) and (4.4). 
these integrals we obtain (the summation is carried out over i from 1 to N, Y/ 
constants determining the solution of the problem according to (5.1)) 

Solving 
are the. 

A, = qaP2 + q2 (Pl  - -  a/2Pe) + qs (P3 + P4) + q~P5 + q6P~ 

q l = p ~ , k x ' ( l + Y g ~ ) ~ , ,  k l ' = k ' - k  o 

q2 = 2P ~ 1 ' [ ( I  + 2Y1 ~ + 2Yat)~, + 3(Y2 ~ + YB~)(a, 2 + a~-l) ~t] 

q a = P ~ X / ( l + Y . ' ) ~ , ,  q ~ = l / 2 p ~ 6 / ( 2 + y l a ~ ) ~ ,  

q. = p ~ ( 9 1  ~ + 2"qWn~) ~ 

(6.3) 
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A, = qoO + q,e ® e, qo = p ~ to'[l, q, = p ~ t,~[, 

,,, r(,: ',,--'/Y:/+ = , . , } , o ,  
• ,,.to "") o,o',- 4 )  o..'] 

t ? =  Ao L \ ko ~o 

P =  anoaN ~, [l = (a, 2 - -  a2,-t)/'aN ~, Ao = koPo - -  To ~ 

(6.4) 

Substituting (6.3) into (6.1) we obtain 

c ,  = k ,P= +211 , ( p t -  t • ~ - P ~ ' )  + T*(P3 + P4) + 6 ,P6  + P * P e  

qi 1 q= q8 
k ,  : k  o-~ t - -4b tq  1 ' ~t, : [ . t  o-~- 2 t--b2q~ ' T,  = T  o-}- t - -4bxq  t 

4qs 4baqa ~ 
~)* = ~0 -~ 4 --  baq a ' [:)* ~ P o - ~  q6"~ l - -4bxq I 

(6.5) 

We can obtain expressions for the coefficients of linear expansion ~,o  and a , ,  from 
(6.3), (6.4) and (6.1). When N = 1 and the matrix and the inclusions are all isotropic, 
the expressions for c. and ~. become identical to those obtained in /2/. 
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The nature of the discrepancies arising in the averaging method used here was discussed 
in /2, 9/. It was noted that in the case of glass fibre-reinforced plastic-type materials 
the relative error in computing c. and u. from formulas analogous to (6.1) did not exceed 
10...15% up to a concentration of the fibres close to dense packing. Fig.3 compares the values 
of the effective elasticity parameters of the fibrous composite calculated using (6.5), and 
the experimental results obtained in /10/. Composites based on an isotropic epoxide resin 
matrix (Eo = 5,27 GPA, ~ 'o-  0,3) and containing transversely isotropic carbon fibres (E, = 8 GPa, 
E~ =- 410 6 GPa, vx2 = o.568, v,, = 0.277, ~a = 10.2 GPa) were investigated in /i0/. Curves 2-4 correspond 
to the computed dependence of the parameters ~. + 2~.. p./40, 3./4, fl. on the concentration of the 
fibres p. The experimental values are shown by the light and dark dots, crosses and squares. 

In conclusion we note that the effective-field method enables us to estimate the con- 
centration of the microstresses on separate fibres within the composite, using a well-known 
scheme /11/. The stress tensor in the neighbourhood of a typical fibre acted upon by an 
external field o 0 can be calculated using the formula 

o (y) = c ( y ) . ( I  + A (y ) ) . e , s ,  e , ,  = [ I  - -  A~.(A o - -  l ) l - l . e o  

and when the composite is heated (cooled) to the temperature t, we have 

(y) = c ( y ) . I ~ ,  (y) - ~ (y) + ( !  + A (y) ) .~ , , l  t 
e, t  = ( I  -- D O " A~)- t .Do.co -1. A t 

Here e.s and e.t are the effective external deformation fields within which a typical 
inclusion is found. By introducing these fields the interaction between the fibres within 
the composite is taken into account. 
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THE PRESSURE EXERTED BY A STAMP OF CIRCULAR CROSS-SECTION ON AN 
ELASTIC HALF-SPACE* 

V.I. MOSSAKOVSKII and E.V. POSHIVALOVA 

A solution of the problem of a circular stamp in its exact formulation, 
i.e. without simplifying assumptions regarding satisfaction of the 
boundary conditions and Laplace's equation, is obtained. A method of 
solving three-dimensional contact problems of the theory of elasticity 
due to Mossakovskii is used, and the solution obtained is compared with 
the solution given in /i/. 

As we know /2/, the problem of the pressure exerted by a stamp of circular cross-section 
reduces, in the case of axial symmetry, to determining the normal derivative F,' (@, 0) in the 
region of contact, and the function F (p,z) harmonic in the half-space and vanishing at 
infinity, which satisfies the following boundary conditions: 

F,'(O, 0 ) = 0 ,  0~. p . f  a, b ~ . p . ~ ,  F ( ~ , O ) - / ( o ~  a < p < o o  (t) 

where a and b denote the inner and outer radius of the annulus, p is the polar radius, and 
z = /(p) is the equation of the stamp surface (the z axis is directed into the elastic 
half-space). 

The pressure under the stamp P (p) is given by the formula 

P (p) = I/2E (| - -  v2) -* F , '  (p, 0), a < p < b 

where E is the modulus of elasticity and v is Poisson's ratio. 
In the general case we must assume that 

~PPikZ.Matem.Mekhun.,53,5,8o8-81o,1989 


